Completing the Square Calculator

Share This Calculator

How Completing the Square Works

1

Start with Standard Form

Begin with ax² + bx + c

Example: x² + 6x + 5

2

Find Half of b

Take b/2, then square it: (b/2)²

6/2 = 3, then 3² = 9

3

Add and Subtract

Add and subtract (b/2)² to complete the square

x² + 6x + 9 - 9 + 5

4

Factor Perfect Square

Group into (x ± h)² + k form

(x + 3)² - 4

Key Formula

ax² + bx + c
a(x - h)² + k

Where:

h = -b/(2a)

k = c - b²/(4a)

Common Examples

Perfect Square Trinomials

x² + 6x + 9(x + 3)²
x² - 4x + 4(x - 2)²
x² + 10x + 25(x + 5)²

Non-Perfect Squares

x² + 6x + 5(x + 3)² - 4
x² - 4x + 3(x - 2)² - 1
x² + 8x + 12(x + 4)² - 4

With Leading Coefficient

2x² + 8x + 62(x + 2)² - 2
3x² - 12x + 93(x - 2)² - 3
-x² + 4x - 3-(x - 2)² + 1
a(x + h)² + k
Where h = b/(2a), k = c - b²/(4a)

Vertex Form

y = a(x-h)² + k

Parabola vertex

Quadratic Solving

ax² + bx + c = 0

Find roots

Optimization

Min/Max problems

Calculus applications

Graphing

Parabola analysis

Function behavior

What is Completing the Square?

📐

What

A method to rewrite quadratic expressions in the form a(x + h)² + k by creating a perfect square trinomial.

🎯

Why

Essential for solving quadratic equations, finding vertex of parabolas, and optimization problems in calculus.

Applications

Algebra (solving equations), geometry (parabola analysis), physics (projectile motion), and engineering optimization.

Step-by-Step Calculation Examples

OriginalStep 1: Identify a,b,cStep 2: Calculate h,kFinal Form
x² + 6x + 5a=1, b=6, c=5h=-3, k=-4(x + 3)² - 4
x² - 8x + 12a=1, b=-8, c=12h=4, k=-4(x - 4)² - 4
2x² + 12x + 10a=2, b=12, c=10h=-3, k=-82(x + 3)² - 8
x² + 10x + 21a=1, b=10, c=21h=-5, k=-4(x + 5)² - 4
-x² + 6x - 5a=-1, b=6, c=-5h=3, k=4-(x - 3)² + 4

Frequently Asked Questions

Quick Reference

📏1 meter
3.28 feet
⚖️1 kilogram
2.2 pounds
🌡️0°C
32°F
🥤1 liter
0.26 gallon