Thermal Stress Converter - Convert MPa, PSI, GPa & More Units
Result:
1 MPa = 145.0377439 PSI
How Thermal Stress Conversion Works
Input Stress
Enter thermal stress value
Select Units
Choose from and to units
Convert
Apply conversion formula
Thermal Stress Formulas
Basic Thermal Stress Formula:
Where:
- σ = Thermal stress (Pa)
- E = Young's modulus (Pa)
- α = Coefficient of thermal expansion (1/°C)
- ΔT = Temperature change (°C)
Unit Conversion Formula:
Example: MPa to PSI
Biaxial Thermal Stress:
Where ν is Poisson's ratio
Thermal Strain:
Thermal strain is dimensionless
Thermal Stress Conversion Table
| MPa | PSI | GPa | kPa | bar | kgf/cm² |
|---|---|---|---|---|---|
| 0.1 | 14.5 | 0.0001 | 100 | 1.0 | 1.02 |
| 0.5 | 72.5 | 0.0005 | 500 | 5.0 | 5.10 |
| 1 | 145.0 | 0.0010 | 1000 | 10.0 | 10.20 |
| 5 | 725.2 | 0.0050 | 5000 | 50.0 | 50.99 |
| 10 | 1450.4 | 0.0100 | 10000 | 100.0 | 101.97 |
| 20 | 2900.8 | 0.0200 | 20000 | 200.0 | 203.94 |
| 50 | 7251.9 | 0.0500 | 50000 | 500.0 | 509.86 |
| 100 | 14503.8 | 0.1000 | 100000 | 1000.0 | 1019.72 |
| 200 | 29007.6 | 0.2000 | 200000 | 2000.0 | 2039.44 |
| 300 | 43511.4 | 0.3000 | 300000 | 3000.0 | 3059.16 |
| 500 | 72519.0 | 0.5000 | 500000 | 5000.0 | 5098.60 |
| 700 | 101526.6 | 0.7000 | 700000 | 7000.0 | 7138.04 |
| 1000 | 145038.0 | 1.0000 | 1000000 | 10000.0 | 10197.20 |
| 1500 | 217557.0 | 1.5000 | 1500000 | 15000.0 | 15295.80 |
| 2000 | 290076.0 | 2.0000 | 2000000 | 20000.0 | 20394.40 |
Thermal Stress Units Progression Chart
1 MPa
10 MPa
50 MPa
100 MPa
200 MPa
500 MPa
Practice Problems
Problem 1:
Convert 150 MPa to PSI
Solution: 150 × 145.038 = 21,756 PSI
Problem 2:
Convert 50,000 PSI to GPa
Solution: (50,000 × 6894.757) ÷ 10⁹ = 0.345 GPa
Problem 3:
Calculate thermal stress: E=200 GPa, α=12×10⁻⁶/°C, ΔT=100°C
Solution: σ = 200×10⁹ × 12×10⁻⁶ × 100 = 240 MPa
Problem 4:
Convert 2.5 GPa to kPa
Solution: 2.5 × 10⁹ ÷ 1000 = 2,500,000 kPa
Problem 5:
Convert 500 bar to MPa
Solution: 500 × 0.1 = 50 MPa
Daily Uses of Thermal Stress
Bridge expansion joints prevent thermal stress damage
Engine components experience thermal stress during operation
Building materials expand and contract with temperature
Electronic circuits manage thermal stress for reliability
Pipeline design considers thermal expansion stress